Resource Sharing on Hardware Accelerators through
Control-Flow Based Optimizations

1 PROBLEM AND MOTIVATION

Domain-Specific Languages (DSLs) are useful for accelerator design,

Caleb Kim
Cornell University
USA
1 fn my_fun(x1: int32, x2: int32) {
2 let y = x1 + 4;
3 let z = (y * 2) + (x2 * 3);
4 return z;
5 %

as they provide high-level abstractions in exchange for a more
limited application [13] or architectural [4] domain. Calyx [11] is
a shared intermediate language for DSL-to-hardware compilers.
DSLs target Calyx, before Calyx optimizes the design and lowers it
to synthesizable RTL. One optimization is resource sharing, which
collapses multiple copies of the same hardware into a single module.
We demonstrate resource sharing using techniques traditional to
software compilers, such as live-range analysis, dominator analysis,
and inlining. This is possible due to Calyx’s software-like control
flow and hardware-like structure (i.e., explicit representation of
hardware modules).

2 RELATED WORK
2.1 The Calyx Language

Figure 1 shows function my_fun and its Calyx equivalent. Calyx
designs consist of components, which have input and output ports
that define their interface (Figure 1b, line 1).

The cells section contains the submodules for the component.
my_fun instantiates six 32-bit primitive cells (lines 2-6).

The wires section contains unordered, continuous assignments
that wire together cell ports. Assignments can be organized into
groups. Group assign_y (lines 8—11) corresponds to let y = x1 + 4
(Figure 1a, line 2).

The control section handles execution: seq for sequential execu-
tion, par for parallel execution, invoke for “calling” cells (e.g., line
23), if statements, and while loops.

2.2 Related Approaches

Many resource sharing approaches, such as SDC [3], first establish
resource (and other) constraints before checking whether a design
can be generated given those constraints. This approach is mono-
lithic; all optimizations (resource sharing, timing, etc.) are required
for compilation, meaning we cannot isolate optimizations for ver-
ification, debugging, etc. Calyx uses a pass-based, LLVM-like [8]
compiler. Passes, which take in and then emit valid Calyx code, can
be skipped, added, and rearranged.

Vericert-Fun [12] shares functions rather than individual oper-
ators. However, functions that (1) call functions or (2) load/store
memory are inlined rather than shared. Inlining increases the num-
ber of instructions in a given function, which increases the com-
plexity of the FSM coordinating its execution, potentially hurting
performance [2, 10].

Prior to our work, Calyx had a register sharing pass to minimize
register usage [11]. We improve this pass by (1) generalizing sharing
to arbitrary Calyx components and (2) providing the ability to share
across inlined components without blowing up FSM complexity.

(a) Software Langauge

component my_fun(x1: 32, x2:32) -> (return:32) {
cells{
y = reg(32); z = reg(32);
add1 = add(32); add2 = add(32);
multl = mult(32); mult2 = mult(32);
3
wires{

group assign_y {
add1.left = x1; addl.right = 4; y.in = addl.out;
y.go 1; assign_yl[donel y.done;
3
group assign_z {
add2. left multl.out; add2.right
z.in add2.out; z.go = 1;
assign_z[done] z.done;
3
return
3}
control{
seq {
assign_y;
par{
invoke multl(left
invoke mult2(left

mult2.out;

z.out;

y.out,right =
x2; right

2);
3)3

3
assign_z;
3
}
}

(b) Calyx

Figure 1: Software function and Calyx equivalent

2.3 Register Sharing in Calyx

Calyx’s original register sharing pass worked by constructing live
ranges for each register and using a greedy coloring algorithm to
share registers with non-overlapping ranges [11]. In Figure 1b, y is
dead by line 25, while z is not live until line 26. Therefore, y and z
can be shared.

To compute liveness, Calyx mostly uses a standard data-flow
formulation. However, par blocks are unique since each thread must
execute (unlike if branches, which may execute). Therefore, Calyx
introduces p-nodes, which correspond to par blocks and recursively
contain CFGs corresponding to the par block’s threads [11].

o pe
assign_y
z start start
-:,' | invoke multl | | invoke mult2 I
. E end end
assign_z i

Figure 2: CFG for Figure 1b. Since p_o is a p-node, assign_z is
dominated by both invoke statements.

3 APPROACH AND UNIQUENESS
3.1 Component Sharing

Sharing arbitrary Calyx components (multipliers, non-primitive
components like my_fun, etc.) lets us share hardware modules other
than registers. However, this presents an additional challenge: while
registers completely overwrite their state at each use, other compo-
nents may be more complicated. Consider a hypothetical compo-
nent counter that counts the number of times it has been invoked.
Since its state is not completely overwritten at each use, (e.g., its
current state being 1 still affects its next state—2), liveness is not
a useful concept for determining when we should share counters.
Therefore, we should not share such components.

We implement a separate pass to conservatively detect if a com-
ponent is shareable (i.e., state is completely overwritten at each use),
using the following criteria: (1) it only instantiates cells that are
themselves shareable (2) in its control flow, any possible read from
a stateful (i.e., non-combinational) cell must be preceded by a write
to it.

Property (1) is easily checked. To check (2), we implement a
mostly traditional dominator analysis [1]. However, since each par
thread must execute, we take the union—rather than intersection—
of dominators when predecessors are ends of p-node threads (see
Figure 2).

3.2 Bounded Sharing

Sharing comes with tradeoffs. While sharing components decreases
usage of that component, it also requires new MUXes to determine
when and where to wire that component’s ports [5]. Therefore,
we implement sharing bounds, letting us specify the maximum
number of times a cell can be shared. We do this by bounding the
total number of times any color can be used in the greedy coloring
algorithm from Section 2.3.

3.3 FSM-Aware Inlining

In Calyx, we implement inlining by replacing the invoke of a com-
ponent with its control flow, which lets us share cells instantiated
within different “parent” components. To address the increased FSM
complexity that comes with inlining [2, 10], we introduce an anno-
tation to Calyx control statements that instructs the compiler to

Caleb Kim

Sharing Bound
- 1
om0 - (]
= Unbounded
o [}
g 1
5 o000 B am
5 8
4 R}
o
° No Component Sharing Component Sharing. Fully Infine. ° N Component Shars ny Component ‘Sharing uly Inine:
Compiler Setting Compiler Setting
(a) LUT Usage (b) Register Usage
Figure 3: GoogleNet Resource Usage

0000 Sharing Bound
@
D 000
©
n
o
s
5 o
-

2000

10000 .

Registers Usage

H] H H g
c ®
5
T
o
e
5
a
@
a

(a) LUT Usage

(b) Register Usage

Figure 4: MobileNet Resource Usage

generate separate FSMs. This makes the inlined control flow visible
to the sharing pass, while generating circuitry as if the components
were still separate. Calyx’s semantics are ideal for this technique,
which requires both software-like control-flow (for inlining) and
hardware-like structure (for FSMs).

4 RESULTS

We use Calyx to simulate inference for six neural networks: AlexNet [7],

GoogleNet [16], LeNet [9], MobileNet [14], SqueezeNet [6], and
VGG [15].
For each design, each operation (e.g., conv2D) is compiled into
a Calyx component, and is properly invoked using Calyx’s con-
trol flow semantics. Calyx compiles each design in less than four
seconds. We measured resource estimates across two variables:
(1) compiler setting:
(a) without component sharing
(b) with component sharing
(c) FSM-aware inlining then sharing
(2) sharing bound:
(@ 1
(b) 8
(c) unbounded
Figure 3 and Figure 4 show resource usage (as reported by Vi-
vado 2020.2) for GoogleNet and MobileNet, though the trends hold
across all designs. Increasing sharing bound has a more drastic

Resource Sharing on Hardware Accelerators through Control-Flow Based Optimizations

effect on LUT/register usage after the introduction of component
sharing. Resource usage is smallest overall when designs are in-
lined and sharing is unbounded. Interestingly, unbounded sharing
does not increase LUT usage. Analyzing the synthesized Verilog,
we hypothesize that unbounded sharing simplifies logic for FSMs
because they read from fewer hardware modules.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

[2] Benjamin Carrion Schafer. 2015. Process selection for maximum resource sharing
in High-Level Synthesis. In Electronic System Level Synthesis Conference (ESLsyn).

[3] J. Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm
based on SDC formulation. In Design Automation Conference (DAC).

[4] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Han-
rahan. 2020. Type-Directed Scheduling of Streaming Accelerators. In Conference
on Programming Language Design and Implementation (PLDI).

[5] Stefan Hadjis, Andrew Canis, Jason H. Anderson, Jongsok Choi, Kevin Nam,

Stephen Brown, and Tomasz Czajkowski. 2012. Impact of FPGA Architecture on

Resource Sharing in High-Level Synthesis. In International Symposium on Field

Programmable Gate Arrays.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

(6

=

[7]
(8]

[9]

[10]

[12

[13

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet Classi-
fication with Deep Convolutional Neural Networks. Commun. ACM (2017).
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO).

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE (1998).

Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Fer-
randi. 2015. Inter-procedural resource sharing in High Level Synthesis through
function proxies. In International Conference on Field Programmable Logic and
Applications (FPL).

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Michalis Pardalos, Yann Herklotz, and John Wickerson. 2022. Resource Shar-
ing for Verified High-Level Synthesis. In International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-
Kelley, and Mark Horowitz. 2017. Programming Heterogeneous Systems from
an Image Processing DSL. ACM Trans. Archit. Code Optim. (2017).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Conference on Computer Vision and Pattern Recognition (CVPR).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper With Convolutions. In Conference on Computer Vision and Pattern
Recognition (CVPR).

	1 Problem and Motivation
	2 Related Work
	2.1 The Calyx Language
	2.2 Related Approaches
	2.3 Register Sharing in Calyx

	3 Approach and Uniqueness
	3.1 Component Sharing
	3.2 Bounded Sharing
	3.3 FSM-Aware Inlining

	4 Results
	References

